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Abstract. Brownian motion in a confining potential fluctuating between two spatially separated potential
profiles is considered as a model of an engine converting nonequilibrium fluctuations into reciprocating
motion on the nanoscale. We present two exact solutions obtained for the parabolic and step potential,
which reveal the temperature and frequency-modulation behavior of the engine. The confining potential
determines the interplay of the independent internal (thermal) and external (discrete) noises: the noises
are cooperated for any potential, except the parabolic one. The engine can operate as a molecular motor,
being supplemented by a rectifying mechanism.

PACS. 05.60.-k Transport processes – 05.40.-a Fluctuation phenomena, random processes, noise, and
Brownian motion

1 Introduction

In everyday life, combustion motors provide a common
solution to the ubiquitous problem of how to convert en-
ergy from forms supplied by nature to directed mechanical
motion. The heart of a motor is an engine that processes
the chemical fuel and generates the reciprocating motion
of a piston. A gear (“crank mechanism”) is used to trans-
form piston oscillations into a continuous directed motion.
Operating principles and conditions of macroscopic com-
bustion motors can be understood and described in terms
of thermodynamics and classical mechanics. Much less
understood are the mechanisms of energy conversion on
the nanoscale, where the underlying physics is completely
different: the systems involved are isothermal, friction
dominates inertia, and the motion effected by diffusion
becomes stochastic. These mechanisms are now under in-
tensive study [1,2] stimulated by applications to nanoscale
machinery [3] and molecular biology, especially for mod-
eling molecular motors [4] and ion pumps [5]. A general
framework for building molecular combustion motor was
formulated in the 1990s [6,7] offering a systematic view
on the problem.

We consider a nanoversion of combustion motor by
analogy to its macroscopic counterpart: (I) the energy
produced by a chemical reaction (or any other exter-
nal process) induces nonequilibrium fluctuations; (II) a
nanoscale engine processes these fluctuations and gener-
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ates reciprocating mechanical motion on time and length
scales long compared to those of the microscopic (thermal)
fluctuations; (III) the reciprocating motion is rectified by
a symmetry-breaking mechanism (some kind of ratchet)
into unidirectional motion. In this Letter we focus on the
stage (II). As a model for the nanoscale reciprocating en-
gine, we propose a Brownian particle moving in a confin-
ing potential fluctuating between two spatially separated
potential profiles. This model is motivated in part by ex-
perimental observation of reciprocating motion during the
process of optomechanical energy conversion in a single-
molecule device [8]. Exact solutions for the reciprocating
velocity obtained for the parabolic and step potentials al-
low us to reveal the physical properties of the engine and
to clear up the role of the thermal noise in the mech-
anism of energy conversion. If and only if the potential
profiles are parabolic, the thermal noise plays a neutral
role and can be neglected. For any other potential shape,
external and internal noises are coupled with the result
that the velocity depends on temperature. The fact that
the two noises acting together (even though their sources
are independent) can generate motion, impossible in the
presence of either of them alone, is strikingly illustrated
by the case of the step potential, where the temperature
dependence of the velocity exhibits a stochastic resonance-
like behavior. Finally we show how the engine being sup-
plemented by a phenomenological rectification mechanism
based on asymmetrical friction fluctuations can operate
as a molecular motor. For this purpose, we discuss a
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Fig. 1. Set-up for the problem. Brownian particle is moving
in the potential which fluctuates between the two profiles U+

(dashed line) and U− (dotted line). The profiles correspond to
the relaxed and tensed conformational states which also deter-
mine the particle friction coefficients, ζ+ and ζ−. The arrows
schematically represent the working cycle of the reciprocating
engine.

two-particle model in which the dynamics of an internal
degree of freedom, playing the role of the engine, leads to
the directional motion of the system. Energetic aspects of
the problem will be considered elsewhere.

2 The model

As a model for the engine, we consider a Brownian par-
ticle moving in a one-dimensional potential in a thermal
bath at temperature T . The state of the particle is char-
acterized by its spatial coordinate x and conformational
variable z. The particle can exist in two conformations, re-
laxed (z = +) and tensed (z = −) (see Fig. 1). Chemical
reactions (or another source of nonequilibrium fluctua-
tions) trigger transitions between these two states. The
switching dynamics z(t) depends neither on x nor on the
thermal noise and is considered as a stationary Markov
process described by the rate equation

Relaxed (+) γ−
�
γ+

Tensed (−). (1)

According to this scheme, the average time spent by the
particle in the relaxed/tensed state is γ−1

± . The confor-
mational state determines both the particle friction coef-
ficient ζ(z) and the potential profile U(x; z), i.e., the po-
tential and the friction fluctuations are parametrized by a
single Markovian noise process z(t). The potential profiles
U±(x) ≡ U(x; z = ±) are spatially separated and may
have various shapes (e.g., be multiwelled but without any
infinitely high wells). They are assumed to tend to infin-
ity for |x| → ∞ or to be defined in a finite domain with
reflecting boundary conditions.

The overdamped dynamics of the model is governed
by the extended Langevin equation [9]

ζ(z)ẋ = −U ′(x; z) +
√

2ζ(z)kBTξ(t) (2)

conjointly with the rate equation (1). A dot and a prime in
equation (2) denote derivatives with respect to time and
position, and ξ(t) is a Gaussian white noise, i.e. ξ(t) = 0,
ξ(t)ξ(s) = δ(t − s), where the overbar represents the av-
erage over the thermal noise. The corresponding master
equation for the time evolution of probability densities for
finding the particle in the relaxed/tensed state at posi-
tion x at time t, ρ±(x, t) ≡ ρ(x, t, z = ±), reads

∂ρ±
∂t

= −∂J±
∂x

− γ±ρ± + γ∓ρ∓, (3)

where

J± = − (βζ± )−1 ∂ρ±
∂x

− ζ−1
±

∂U±
∂x

ρ±

is the probability current, β = (kBT )−1, ζ± ≡ ζ(z =
±), and kB is the Boltzmann constant. The quantity of
interest is the particle velocity in each state defined as

v±(t) =
∫ ∞

−∞
dxJ±(x, t). (4)

After transient effects, the system approaches a steady
state ρss±(x). So the long-time velocity v± ≡ limt→∞ v±(t)
can be written in the following form:

v± = γ∗
∞∫

−∞
dx

x∫

−∞
dy [p∓(y) − p±(y)]

= ±γ∗
∞∫

−∞
dxx [p+(x) − p−(x)] = ±γ∗ (〈x〉+ − 〈x〉−

)

(5)
(from here on ± signs refer to the upper and lower sub-
script, respectively). We have introduced the effective fre-
quency of modulation (γ∗)−1 ≡ γ−1

+ + γ−1
− , the proba-

bility density for the particle position distribution in the
relaxed/tensed state p±(x) = (γ±/γ∗) ρss±(x) (normalized
to unity), and the averages 〈x〉± =

∫ ∞
−∞ dxxp±(x). Note

that the functions p±(x) satisfy the system of coupled or-
dinary differential equations

d

dx

[
e−βU± d

dx

(
eβU±p±

)]
= βγ±ζ± (p± − p∓) . (6)

Thus the model under consideration generates bidi-
rectional (reciprocating) motion transforming the energy
coming from the source of nonequilibrium. The particle
moves back and forth with the same absolute value of
the velocity v ≡ |v±| (the complete average, (v+ + v−),
is zero, as it must be for bounded motion). This value is
determined by the difference 〈x〉+ − 〈x〉− which can be
found from the solution to equation (6) or its following
reduced form

〈
U ′
±

〉
± = ∓γ±ζ±

(〈x〉+ − 〈x〉−
)
, (7)

valid for any confining potentials defined in the infinite
interval −∞ < x < ∞.
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3 Illustrative examples

A particularly simple (exact) result is obtained when both
conformational states are characterized by the parabolic
potentials: U±(x) = 1

2k± (x − a±)2, where k± and a± are
the curvatures and the locations of potential well minima
separated by the distance L = a+ − a−. In this case, it
immediately follows from equations (5) and (7) that

v =
γ∗L

1 + γ+ζ+/k+ + γ−ζ−/k−
. (8)

Interestingly, the difference 〈x〉+ − 〈x〉− is temperature-
independent implying no contribution to the reciprocat-
ing velocity from the thermal noise. This is a signature of
the parabolic potential involved: equilibrium and nonequi-
librium fluctuations are not coupled. Moreover, the ther-
mal noise can be ignored if and only if the potentials U+

and U− are parabolic.
Even small nonparabolicity of the confining poten-

tial leads to the coupling of the noises (even though
their sources are statistically independent) and to the
temperature-dependent velocity [10]. The temperature ef-
fect on the velocity may be manifested differently depend-
ing on the potentials. In particular, the thermal noise can
have a constructive effect enhancing the velocity for a ju-
diciously chosen potential pair. An especially illustrative
example is a model of a potential box with a step bar-
rier of height u as shown in Figure 2a, which has the
advantage of being fully analytically tractable. For this
model, U±(x) = uθ (±L ∓ x), where θ(x) is the Heaviside
step function, and p±(x) can be found from two coupled
second-order differential equations (6) supplemented with
the condition of the probability current continuity and the
jump conditions at x = L [11]. The result for the veloc-
ity is

v = γ∗L tanh
βu

2
sechω

[
sinh(ω/2)

ω/2

]2

, (9)

where the dimensionless parameter ω2 =β(γ+ζ++γ−ζ−)L2

represents the coupling between the external and internal
noises.

Upon variation of the temperature, the velocity v given
by equation (9) exhibits a bell-shaped behavior shown in
Figure 2b, which is totally different from that we have seen
for the parabolic potential. Such a stochastic resonance-
like effect admits a simple explanation. At high temper-
atures, the + and − states become almost identical and
the velocity decays as u/(kBT ). At zero temperature, the
transduction mechanism stops because the motion in the
flat potential invoked is frozen. For small T , the velocity
increases linearly with the temperature.

The reciprocating velocity as a function of the flip-
ping rate γ± appears much the same for both considered
models with the parabolic or step potential. With one
of the rates, say γ+, varied and the other fixed, the ve-
locity exhibits a nonmonotonic dependence on γ+. It be-
comes zero in the limiting cases of γ+ = 0 and γ+ = ∞
since either of them implies the reduction of the two-state
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Fig. 2. The model of a potential box with a fluctuating step
barrier. (a) A sketch of the potential profiles U+ and U−.
(b) The reciprocating velocity vs temperature for the step bar-
rier height u = 1 and 5 pN nm (solid and dashed line, re-
spectively), as calculated from equation (9) with L = 20 nm,
γ+ = γ− = γ = 103 s−1, ζ+ + ζ− = 1.5 × 10−6 pN s/nm.
(c) Reduction of the difference |p+(x) − p−(x)| for increasing

values of the parameter ω =
√

βγ (ζ+ + ζ−)L indicated by the
numbers near the curves. Here the parameter ω represents the
frequency modulation and L∗ = L coth(βu/2).

model to the one-state model. A more interesting situa-
tion arises when γ+ = γ− ≡ γ. Then, v monotonously
increases with γ approaching a nonzero limit at γ = ∞
(see Eqs. (8) and (9)). To account for this fact, let us
consider how the difference 〈x〉+ − 〈x〉− varies with γ.
In the low frequency limit, the probability distribution
p±(x) has enough time to adjust to the new potential af-
ter each state flip. Thus, the quasiequilibrium densities p+

and p− are well separated and the difference 〈x〉+ − 〈x〉−
is close to its equilibrium value L (see Fig. 2c). With an
increase in γ, the adjustment becomes more and more dif-
ficult, so that p+ and p− approach each other, and the
value of 〈x〉+ − 〈x〉− diminishes. As γ → ∞, the system
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is not capable of tracking the potential modulations and
feels an effective potential. The probability distributions
for the tensed and relaxed states become almost identi-
cal except for a very narrow domain with the width (and
consequently 〈x〉+ − 〈x〉−) decaying as γ−1. As a result,
v → [βL(ζ+ + ζ−)]−1 tanh(βu/2) when γ → ∞. The same
mechanism holds for parabolic and presumably for any
other potential [12].

4 Rectification due to friction asymmetry

We have a mechanism to transduce, at the mesoscale
level, chemical energy into mechanical energy of recipro-
cating motion. To obtain a molecular motor, which con-
verts chemical energy into directed motion, it remains to
equip the engine with any appropriate gear rectifying re-
ciprocating motion (“crank gear”). With this in mind,
consider a system consisting of two mutually interact-
ing Brownian particles moving on the track [13]. Like in
the above-discussed one-particle model, the system is as-
sumed to have two conformational states, relaxed (+) and
tensed (−). The discrete conformational state variable z(t)
determines both the interaction potential U(x2 − x1; z)
(with x1 and x2 denoting the locations of the left and
the right particles along the track) and the friction coef-
ficients ζ1(z) and ζ2(z) of the particles. The overdamped
dynamics of the model in a thermal bath at temperature T
is now described by the two coupled extended Langevin
equations:

ζi(z)ẋi = −∂U(x2 − x1; z)
∂xi

+
√

2ζi(z)kBTξi(t), i = 1, 2

(10)
and the rate equation (1) for the conformational state
variable z(t). Here ξ1(t) and ξ2(t) are not correlated stan-
dardized Gaussian white noises: ξi(t) = 0, ξi(t)ξk(s) =
δikδ(t − s).

By introducing the center of mass X = 1
2 (x1 + x2)

and the internal variable x = x2 − x1, one obtains two
stochastic equations of motions in terms of the new vari-
ables. It can be ascertained that one of them, the equa-
tion for x, coincides with the Langevin equation (2) with
ζ−1(z) replaced by

[
ζ−1
1 (z) + ζ−1

2 (z)
]
, whereas the other

relates Ẋ to ẋ. This implies that the dynamics along the
internal coordinate (i) is governed by external modulation,
as specified by equation (1), and evolves independently of
the system motion; (ii) represents the reciprocating en-
gine discussed above; (iii) underlies the system motion. In
the long-time limit, the relation between Ẋ and ẋ aver-
aged over both external and thermal noises can be written
as follows:

V = µv, µ =
ζ1(+)ζ2(−) − ζ2(+)ζ1(−)

[ζ1(+) + ζ2(+)] [ζ1(−) + ζ2(−)]
, (11)

where V = limt→∞〈Ẋ(t)〉 is the system velocity and
v ≡ |v±| is reciprocating velocity, equation (5). The rec-
tification coefficient µ represents the left-to-right/right-
to-left asymmetry of the model. The rectification mecha-
nism exploits the asymmetry of friction fluctuations. Thus

in the absence of any macroscopic gradients, the sys-
tem moves unidirectionally due to rectification of internal
movement driven by the energy absorbed from the source
of the nonequilibrium fluctuations (such as ATP successive
hydrolysis cycles), i.e., the system operates as a two-head
molecular motor.

A mechanism providing the asymmetric friction fluctu-
ations can be exemplified within the framework of a simple
phenomenological model. This model includes two chan-
nels of energy dissipation for the protein head sliding with
the constant velocity on the microtubule track: the viscous
dissipation due to hydrodynamic Stokes-type resistance of
the solvent and the dissipation due to continuous making
and breaking of weak chemical bonds between the protein
and the microtubule, which is called protein friction [14].
If the time scale for protein motion is much longer than
the times associated with the binding/unbinding kinet-
ics, the friction forces are linear in the velocity, with the
friction coefficients ζv and ζp for the viscous and protein
friction, respectively. In this case, the protein friction dom-
inates, ζp � ζv, and the viscous friction can be neglected.
However, if the protein motion is so fast that the chemical
bonds have no enough time to form, the viscosity friction is
solely responsible for energy dissipation. Turning back to
our two-particle model, imagine now that only one of the
particles, say the first, is able to interact with the track.
Moreover, assume that the potential associated with the
relaxed (tensed) state implies a sufficiently slow (fast) dy-
namics to allow (suppress) protein friction. Then, the fric-
tion coefficient of the left particle fluctuates, ζ1(+) = ζp

and ζ1(−) = ζv, while the friction coefficient of the right
particle is constant ζ2(±) = ζv. Thus, the rectification
coefficient is µp = 1

2 (ζp − ζv) / (ζp + ζv). This expression,
along with equations (5) and (11), gives the velocity of
the two-head motor which involves rectification of recip-
rocating motion by the protein friction mechanism for any
potential of the inter-head interaction [15]. It is notewor-
thy that the biologically relevant model of molecular mo-
tor based on the protein friction concept was suggested
by Mogilner et al. [16]. Our two-particle model general-
izes the Mogilner et al. model to the case of arbitrary
interaction between the motor heads [17]. In the partic-
ular case of the parabolic setup (an effective spring con-
sidered in Ref. [16]), our result for the velocity, given by
equations (8) and (11) with µ = µp, coincides with that
obtained by Fogedby et al. [18] within the Mogilner et al.
model. Importantly, the parabolic potential used in ref-
erences [16,18] leads to a chemically driven power stroke
mechanism, while the thermal noise can play a key role in
the energy transduction for a nonparabolic potential.

5 Summary

In summary, we have devised a nanoscale reciprocating
engine by using Brownian motion in a fluctuating confin-
ing potential. We have found an interesting interplay of
external and internal noises underlain by the action of the
confining potential. Among other aspects, we have also



Yu.A. Makhnovskii et al.: Reciprocating nanoengine 505

discussed the problem of how to construct a molecular
motor based on the reciprocating engine.
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